Math 115
Fall 2018
Lecture 13

$$
\begin{gathered}
3 a^{2}+b^{2}=c^{2} ? \\
y=100 x+b d=r t
\end{gathered}
$$

Some Review:
(1) find equation of a line that contains $(-3,2)$ with slope $\frac{2}{5}$. Graph ξ label it clearly. we have one pt \& slope, then we can use point-slope formula.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{2}{5}(x-3) \\
& y-2=\frac{2}{5}(x+3) \\
& y-2=\frac{2}{5} x+\frac{6}{5} \\
& y=\frac{2}{5} x+\frac{6}{5}+2 \\
& y=\frac{2}{5} x+\frac{6}{5}+\frac{10}{5} \\
& \text { Slope- } y=\frac{2}{5} x+\frac{16}{5}
\end{aligned}
$$

(2) find equation of a line that contains $(-3,5)$ and $(3,1)$. Graph it, and label it clearly. we have two Points, we can find slope of the line.

$$
\begin{aligned}
& (-3,5),(3,1) \\
& m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{5-1}{-3-3}=\frac{4}{-6}=\frac{-2}{3}
\end{aligned}
$$

Now we can use the slope and one of the points with
Point- slope formula.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{-2}{3}(x-3) \\
& y-1=\frac{-2}{3} x+\frac{2}{3} \cdot 3 \\
& \frac{y-2 / 3 x+3}{\text { slope }-1 n+50 m .}
\end{aligned}
$$

(3) find eqn of a line that contains $(-4,0)$ and it is parallel to $3 x-2 y=4$.
Graph both lines.
Parallel lines must have same slope.

$$
\begin{aligned}
& 3 x-2 y=4 \\
& -2 y=-3 x+4 \\
& y=\frac{3}{2} x-2 \quad \text { slope }=\frac{3}{2}
\end{aligned}
$$

\rightarrow use this slope with given Point.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{3}{2}(x--4) \\
y=\frac{3}{2} x+\frac{3}{2} \cdot 4 \\
y=\frac{3}{2} x+6
\end{gathered}
$$

(4) find equation of a line that contains $(5,-2)$ and perpendicular to $3 x+4 y=-8$.
Graph both lines.
we have Perpendicular lines.
Slopes are negative reciprocal

$$
\begin{gathered}
4 y=-3 x-8 \\
y=\frac{-3}{4} x-2 \\
m=\frac{-3}{4}
\end{gathered}
$$ of each other.

Slope for our line has to be $\frac{4}{3} . y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{array}{ll}
y-2=\frac{4}{3}(x-5) \\
\frac{y+2=\frac{4}{3} x-\frac{20}{3}}{3 y=4 x-26} & y=\frac{4}{3} x-\frac{20}{3}-2 \\
-4 x+3 y=-26 & y=\frac{4}{3} x-\frac{20}{3}-\frac{6}{3} \\
4 x-3 y=26 & y=\frac{4}{3} x-\frac{26}{3} \text { standard } \\
&
\end{array}
$$

Geraph \&̇ shade

$$
\left\{\begin{array}{l}
x \leq 4 \\
y>-3 \\
y \leq \frac{5}{2} x-3
\end{array}\right.
$$

Solve by graphing

$$
\left\{\begin{array}{l}
x+y=4 \\
x-y=4
\end{array}\right.
$$

Solve by graphing

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-4 y=24 \\
y=-\frac{3}{2} x+3 \\
\frac{-3}{2}
\end{array}\right. \\
& 3(4)-4(-3)=12+12=24
\end{aligned} \begin{aligned}
& -3=\frac{-3}{2}(4)+3 \\
& -3=-6+3=-3
\end{aligned}
$$

Solve by Substitution method:

$$
\begin{cases}3 x+2 y=7 & 3(y+4)+2 y=7 \\ x=y+4 & 3 y+12+2 y=7 \\ x=-1+4 & 5 y=7-12 \\ x=3 & 5 y=-5\end{cases}
$$

final Ans: $(3,-1)$

Solve by Subs method:

$$
\left.\left.\left\{\begin{array}{rl}
2 y=14-6 x & 2(7-3 x) \\
2(14-6 x \\
y=7-3 x & 14-6 x
\end{array}\right)=14-6 x\right\}+14-14\right\}
$$

True
infinite number of Solutions.

Solve by Subs. method:

$$
\{\begin{array}{cc}
2 x+10 y=3 & 2(1-5 y)+10 y=3 \\
x=1-5 y & 2-10 y+10 y=3 \\
2=3 \\
\text { false }
\end{array} \underbrace{2}_{\text {No Solution }}\}
$$

Solve by addition/ elimination method:

$$
\begin{array}{cc}
\left\{\begin{array}{cc}
x+y=10 \\
x-y=-4
\end{array}\right. & 3+y=10 \\
2 x=6 & \text { final Ans } \\
x=3 & (3,7)
\end{array}
$$

Solve by addition/elimination method:

$$
\begin{gathered}
2\left\{\begin{array}{cc}
2 x-y=12 \\
3 x+2 y=-3
\end{array} \Rightarrow \frac{\left\{\begin{array}{l}
4 x-2 y=24 \\
3 x+2 y \\
3 x
\end{array}\right.}{7 x} \begin{array}{c}
7 x \\
3(3)+2 y=-3 \\
9+2 y=-3 \\
2 y=-12 \\
y=-6
\end{array}\right.
\end{gathered}
$$

Solve by addition/elimination method:

$$
\begin{aligned}
& \begin{array}{l}
2\left\{\begin{array} { l }
{ 6 x - 2 y = - 2 2 } \\
{ - 3 x + 4 y = 1 7 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
12 x-4 y=-44 \\
-3 x+4 y & =17
\end{array}\right.\right. \\
-3(-3)+4 y=17
\end{array} \\
& -3(-3)+4 y=17 \\
& x=-3 \\
& 9+4 y=17 \\
& 4 y=8 \quad y=2 \quad(-3,2)
\end{aligned}
$$

Solve

$$
\begin{aligned}
& 2\left\{\begin{array} { l }
{ 4 x - 3 y = - 1 9 } \\
{ 3 x + 2 y = 2 4 } \\
{ 3 x }
\end{array} \Rightarrow \left\{\begin{array}{ll}
8 x-6 y=-38 \\
9 x & +6 y=72
\end{array}\right.\right. \\
& 3(2)+2 y=24 \\
& 17 x \\
& 6+2 y=24 \quad 2 y=18 \\
& (2,9) \\
& x, 9
\end{aligned}
$$

Class quiz
(1) find slope of a line that contains $(4,-6)$ and $(0,3), m=\frac{-6-3}{4-0} \quad m=\frac{-9}{4}$
(2) write $2 x-3 y=6$ in slope-Int. form. $-3 y=-2 x+6 \quad y=\frac{-2}{-3} x+\frac{6}{-3}$

(3) Graph $y=\frac{-3}{4} x+3$. \quad| $y=\frac{2}{3} x-2$ |
| :---: |

Sum of two numbers is 8 . Their difference is 4 . Use system of linear equations in two variables to find them.

$$
\begin{gathered}
\left\{\begin{array}{l}
x+y=8 \\
x-y=4
\end{array}\right. \\
\hline 2 x=12 \\
x=6 \\
6+y=8 \\
y=2
\end{gathered}
$$

The perimeter of a rectangular shape is 44 meters. The length is 1 m longer than twice its width. Use system of linear equations in two variables to find its dimensions.

$$
\begin{gathered}
2(2 w+1)+2 w=44 \\
4 w+2+2 w=44 \\
6 w=42
\end{gathered} \quad \rightarrow \begin{aligned}
& w=7 \\
& L=2(7)+1 \\
& L=15
\end{aligned}\left\{\begin{array}{c}
\text { Dimensions } \\
7 m \text { by } \\
15 m
\end{array}\right.
$$

Lisa has 5 coins.
Dimes \sum_{1} Nickels only she has 40 d.
$D \rightarrow$ Dimes
$N \rightarrow$ Nickels
use system of linear $-5 \int D+N=5$ equations in two variables $\{10 D+5 N=40$ to find How Many of each? $10 D+5 N=40$

$$
\left[\begin{array}{rr}
-5 D-5 N=-25 & 3+N=5 \\
N=2
\end{array}\right.
$$

$$
\{10 D+5 N=40
$$

$$
5 D \quad=15
$$

she has 2 Nickels \& 3 Dime

Two angles are Complementary.
one of them is 5 times the other one.
use system of linear equations in two variables to find the measure of both angles.

$$
\begin{gathered}
\left\{\begin{array}{l}
x+y=90 \\
x=5 y
\end{array}\right. \\
5 y+y=90 \\
6 y=90 \\
y=15 \\
x=5(15) \\
x=75
\end{gathered}
$$

Two angles are supplementary.
one of them is 20°
less than the other one.
find both angles by using

$$
\left\{\begin{array}{l}
x+y=180 \\
x=y-20
\end{array}\right.
$$

system of linear equations in two Variables.

$$
y-20+y=180
$$

$$
\begin{array}{r}
2 y=200 \\
y=100 \\
x=100-20 \\
x=80
\end{array}
$$

$$
A(-6,4), B(6,0)
$$

(1) Draw $\overline{A B}$
(2) find $d(A, B)$
(3) find M for $\overline{A B}$.
(4) Find m for $\overline{A B}$.

$$
\begin{array}{cl}
m\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
=m\left(\frac{-6+6}{2}, \frac{4+0}{2}\right)=m(0,2) & d=\sqrt{(-12)^{2}+4^{2}} \\
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{4-0}{-6-6}=\sqrt{144+16}=\sqrt{160} \\
=\frac{4}{-12}=\frac{-4}{12}=\frac{-1}{3}
\end{array}
$$

20 TKTs were purchased.
Kids ε_{1} Adults only.
Kids Pay $\$ 5$.$\quad\left\{\begin{array}{l}A+K=20 \\ 12 A+5 K=156\end{array}\right.$
Adults Pay \$12.
Total cost \$156
How many of each? $\left\{\begin{array}{l}-5 A-5 k=-100 \\ 12 A+5 k=156\end{array}\right.$ You must use system of linear eqns in two

$$
A=8
$$

variables. $\begin{aligned} & 8 \text { Adults } \\ & 12 k_{i} d s\end{aligned}$

$$
8+k=20
$$

$$
k=12
$$

find the measure of an angle whose Complement is four times its measure.

Angle $\rightarrow x$
Complement $\rightarrow 90-x$

Complement $=4 \cdot$ Angle

$$
\begin{aligned}
& 90-\underset{\sim}{x}=4 x \\
& 90=4 x+x \\
& 90=5 x \\
& \frac{90}{5}=x \quad x=18
\end{aligned}
$$

find an angle whose supplement is three times its measure.

Angle $\rightarrow x$
Supplement $\rightarrow 180-\chi$

$$
\text { Supplement }=3 \cdot \text { Angle }
$$

$$
\begin{aligned}
& 180-x=3 \cdot x \\
& 180=3 x+x \\
& 180=4 x \\
& \frac{180}{4}=x \quad x=45
\end{aligned}
$$

find an angle such that the sum of its Complement and its supplement is 160°.

Angle $\rightarrow x$
Complement $\rightarrow 90-x$

Complement $+\underbrace{\text { Supplement }}=160^{\circ}$.

$$
90-x+180-x=160
$$

Supplement $\rightarrow 180-\chi$

$$
270-2 x=160
$$

(

Find an angle such that the difference between its supplement and 3 times its complement is 10°.

Angle $\rightarrow \chi$
Complement $\rightarrow 90-x$
Supplement $\rightarrow 180-x$

Suppl. -3 Comp. $=10^{\circ}$

$$
\begin{aligned}
& 180-x-3(90-x)=10 \\
& 180-x-270+3 x=10 \\
& 2 x-90=10 \\
& 2 x=100 \quad x=50
\end{aligned}
$$

In triangle $A B C$, angles $A \dot{\varepsilon}_{1} B$ are equal
 angle C is 60° more than angle A.

$$
\begin{aligned}
& A+B+C=180^{\circ} \\
& x+x+x+60=180
\end{aligned}
$$

find all 3 angles.
$40^{\circ}, 40^{\circ}$, and 100°

$$
x=40
$$

WP on Angles غ. Triangles due @ 6:00 AM Quiz at 6:00. Do not forget about graphing Project

